ESTIMATION AND INFERENCE FOR VERY LARGE LINEAR MIXED EFFECTS MODELS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation and Inference for Very Large Linear Mixed Effects Models

Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as N3/2 when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applic...

متن کامل

Supplementary material for: Estimation and Inference for Very Large Linear Mixed Effects Models

The model from Gao and Owen (2017) applied those U-statistics to Yij instead of ηij . In our notation, their Yij = μ+ ηij . Because the intercept μ cancels, these U-statistics defined via ηij are equivalent to those defined via Yij . Theorem 9.1. Let Yij follow the random effects model (1) with the observation pattern Zij as described in Section 2. Then the U -statistics defined at (100) have v...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Robust MM-Estimation and Inference in Mixed Linear Models

Mixed linear models are used to analyse data in many settings. These models generally rely on the normality assumption and are often fitted by means of the maximum likelihood estimator (MLE) or the restricted maximum likelihood estimator (REML). However, the sensitivity of these estimation techniques and related tests to this underlying assumption has been identified as a weakness that can even...

متن کامل

Bayesian inference for generalized linear mixed models.

Generalized linear mixed models (GLMMs) continue to grow in popularity due to their ability to directly acknowledge multiple levels of dependency and model different data types. For small sample sizes especially, likelihood-based inference can be unreliable with variance components being particularly difficult to estimate. A Bayesian approach is appealing but has been hampered by the lack of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2020

ISSN: 1017-0405

DOI: 10.5705/ss.202018.0029